

Les systèmes de numération

Le 08/10/11 Auteurs : FC, JPK, LL,JCP

Les différents systèmes de numération

Représentation des données pour un système numérique/informatique

Un ordinateur pourrait se résumer à un ensemble de commutateurs électrique pouvant prendre deux états :

- En fonction	Le courant pa	asse		
- Hors fonction ——	Le courant ne pa	asse pas		
Pour les différentes tach binaire.	nes qu'ils effectuent de nos jou	rs, les ordinateurs utilisent	le système de nu	umération
<u>Système de numération</u> exemple, le langage bin les commutateurs.	: ensemble de symboles perm aire est constitué de 2 symbole fonctionnent avec le système d	es, 0 et 1. Correspondant a	aux 2 états que po	euvent prendre
•	s informations des utilisateurs.	•		D'
constituent la plus petite	e unité d'information d'un ordina	ateur.		
Un groupe de 8 bits cor	respond à un Octet	ou « BYTE » en anglai	s, qui représente	un caractère de
données. Pour un ordina	ateur, un octet représente égal	ement un emplacement de	mémoire adress	sable.

Par exemple, la représentation binaire des caractères du clavier et des caractères de contrôle est donnée dans le tableau de *l'American Standard Code for Information Interchange* (ASCII) dont voici un extrait :

Décimal	Hexadécimal	Octal	Binaire	Caractères
0	0	000	00000000	NUL
1	1	001	0000001	SOH
2	2	002	00000010	STX
3	3	003	00000011	ETX
4	4	004	00000100	EOT
5	5	005	00000101	ENQ
42	2A	052	00101010	*
43	2B	053	00101011	+
44	2C	054	00101100	,
45	2D	055	00101101	-
46	2E	056	00101110	,
58	3A	072	00111010	:
59	3B	073	00111011	;
60	3C	074	00111100	<
61	3D	075	00111101	=
62	3E	076	00111110	>
63	3F	077	00111111	?
64	40	100	01000000	@
65	41	101	01000001	Α
66	42	102	01000010	В
67	43	103	01000011	С
68	44	104	01000100	D
69	45	105	01000101	E

Extrait du tableau ASCII

Les systèmes de numération

Le 08/10/11 Auteurs : FC, JPK, LL,JCP

Ce tableau nous présente les équivalences entre différents systèmes de numération que nous allons étudier par la suite. Si nous regardons la colonne « binaire », nous voyons que tous les caractères sont exprimés grâce à une combinaison de 8 bits pouvant prendre la valeur 0 ou la valeur 1.

Pour mieux comprendre le système ASCII, considérons un fichier écrit avec le bloc notes de Windows. La structure de ce fichier est juste une suite d'octet représentant les caractères saisis par l'utilisateur.

Du fait de la taille des informations contenues dans les ordinateurs actuels, différentes unités de mesure ont été mis en place :

Unité décimale	Valeur	Unité binaire	Valeur	Exemples
Bit (b)	Chiffre binaire	Bit	Chiffre binaire	+5 volts ou 0 volts
	1 ou 0		1	
Octet (o)	8 bits	Octet	8 bits	01001100 correspond a la
				lettre L en ASCII
Kilo-octet (Ko)	1 kilo-octet	Kibi-octet (Kio)	1 kio-octet	mail type : 2ko
	=1 000 octets		=1024 octets	premiers PC : 64Ko de Ram
Méga-octet (Mo)	1 méga-octet	Mebi-octet (Mio)	1 Mio = 1024 Kio	disquette = 1,44 Mo
	=1000 kilo-octets		=1048576 octets	cdrom = 700 Mo
Gigaoctet (Go)	1 gigaoctet	Gibi-octet (Gio)	1 Gio = 1024 Mio	disque dur type = 500 Go
	=1000 méga-		=1073741824	
	octets		octets	
Téraoctet (To)	1 téraoctet	Tébi-octet (Tio)	1 Tio = 1024 Gio	quantité théorique de
	=1000 giga-octets		=	données
			1099511627776	transmissibles par une fibre
			octets	optique
				en 1 seconde

Les différentes unités de mesures

Les différents systèmes de numération

L'homme est habitué dès le plus jeune age à utiliser un système de numération pour représenter des valeurs. Ce système comporte 10 symboles : $0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9$ et se nomme « système de numération décimal».

Ce système constitue la base du calcul pour les hommes, principalement parce que ces derniers ont 10 doigts. Nous utiliserons d'ailleurs ce système comme système de référence dans la suite du cours. Cependant, il existe d'autres systèmes de numération pouvant représenter des valeurs.

Une valeur est de ce fait une notion abstraite pouvant être exprimé selon différents systèmes :

Par exemple, nous savons qu'un ordinateur fonctionne avec des commutateurs électriques pouvant avoir 2 états : en fonction et hors fonction. L'ordinateur va donc utiliser un système de numération avec deux symboles : 0 et 1. C'est ce que l'on appelle le système binaire. Il fonctionne de manière analogue au système décimal sauf qu'il n'utilise que 2 symboles.

Exemple : 1011 qui équivaut en décimal à la valeur	11	
Autres systèmes, le système hexadécimal, comportant 16 symboles	0 1 2 3 4 5 6 7 8 9 A B C D E F	
Les 6 lettres correspondent en décimal à A=10 B=11 C=12 D=13	E=14 F=15	

Les systèmes de numération

Le 08/10/11 Auteurs : FC, JPK, LL,JCP

Exemple : A2F54B qui équivaut en décimal à la valeur

10679627

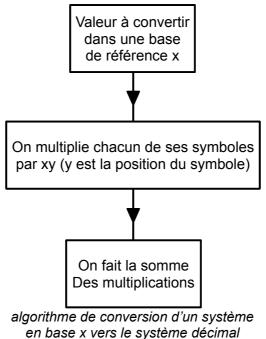
Il est évident ici de l'utilité de disposer de plusieurs systèmes d'informations. Une fois que l'on est familiarisé avec ces différents systèmes, la valeur A2F54B est plus facile à manipuler ou à mémoriser que son équivalent décimal.

Voici les différents systèmes que nous utiliserons ainsi que leur spécificité (l'octal est peu utilisé) :

Nom	Symboles utilisés	Base	
binaire	0 1	2	b
octal	01234567	8	0
décimal	0123456789	10	(d)
hexadécimal	0123456789ABCDEF	16	h

les différents systèmes de numération

Méthodes de conversion de base


Méthodes de conversion de base

Conversion en base 10 (décimal)

Le système décimal repose sur les puissances de 10. Chaque symbole composant un nombre décimal représente une puissance de 10 ; chacun ayant pour exposant sa position dans le nombre en partant de la droite ; multiplié par le symbole occupant cette position.

Décomposition d'un nombre décimal
$$25642 = 2 \times 10^{4} + 5 \times 10^{3} + 6 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0}$$

Pour convertir une valeur exprimée dans un système en une valeur utilisant le système de numérotation décimal, l'algorithme est le suivant :

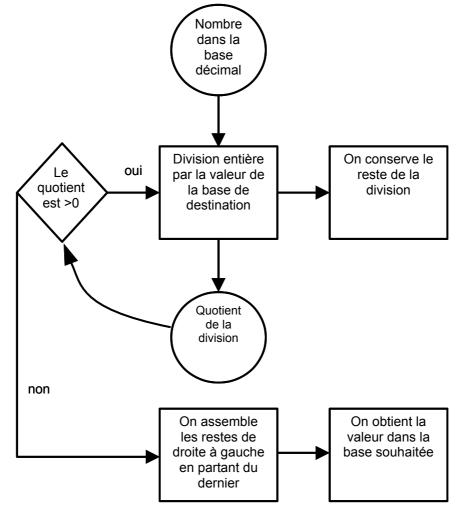
Les systèmes de numération

Le 08/10/11 Auteurs : FC, JPK, LL,JCP

Exemple:

$$20165 (octal)$$

$$=2x8^{4}+0x8^{3}+1x8^{2}+6x8^{1}+5x8^{0}=8182+0+64+48+5=8309 (dec)$$

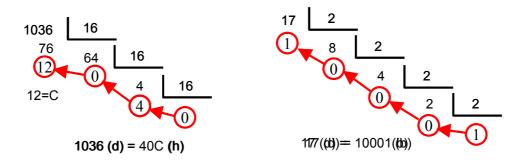

$$A2F54B (hexadécimal)$$

$$=A(10)x165+2x16^{4}+F(15)x16^{3}+5x16^{2}+4x16^{1}+B(11)x16^{0}$$

$$=10485760+131072+61440+1280+64+11=10679627 (dec)$$

Conversion de base 10 (décimal) vers les autres bases

Nous allons maintenant voir comment effectuer l'opération inverse, à savoir convertir la base décimale vers les autres bases :


Algorithme de conversion d'un nombre décimal vers une autre base

Les systèmes de numération

Le 08/10/11 Auteurs : FC, JPK, LL,JCP

Exemple : Conversion de 1036(dec) en hexadécimal et 17(dec) en binaire.

Conversion entre la base 2 (binaire) et la base 16 (hexadécimal)

Dans le domaine informatique l'utilisation du binaire s'est imposée par la nature des signaux électriques. Le fonctionnement des systèmes informatiques se résume par des "contacts" ouverts ou fermés. Niveaux logiques 5 volts et 0 volt par exemple.

La manipulation de nombres ou de données codés en binaire devient rapidement très difficile pour les informaticiens. On note que la base 16 a des caractéristiques intéressantes pour converser avec les systèmes binaires.

Correspondance binaire hexadécimal

Dec	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Bin	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100	1101	1110	1111
Hex	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F

On constate que le plus grand nombre que l'on peut écrire avec un caractère en hexadécimal est F correspond au plus grand nombre que l'on peut écrire avec 4 caractères en binaire (1111).

Conversion du binaire vers l'hexadécimal

Soit un nombre 1001011 binaire constitué de bits (binary digit) (chiffres constituant le nombre).

Repère du bit	6	5	4	3	2	1	0
Poids du bit	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Nombre	1	0	0	1	0	1	1

Le nombre en binaire est décomposé en série de 4 caractères (4 bits) auxquels on affecte un poids de 2º à 23.

Poids du bit	2 ³	2 ²	2 ¹	20		2 ³	2 ²	2 ¹	2 °
Nombre	0	1	0	0		1	0	1	1
Somme décimal	omme décimal 4 11								
Somme hexa.		4					E	3	

Un 0 à gauche à été ajouté pour la démonstration mais n'a aucune influence. Nous pouvons dire que 1001011en binaire est égal à 4B en hexadécimal.

Les systèmes de numération

Le 08/10/11 Auteurs : FC, JPK, LL,JCP

Conversion de l'hexadécimal vers du binaire

L'opération inverse est assez simple à mettre en œuvre.

A partir d'un nombre en hexadécimal, constitué de n caractères. Il faudra au maximum 4xn bits pour l'écrire en binaire.

Exemple: C5(hexadécimal) est égal à 11000101 (binaire)

Nombre hexa.	С					;	5	
Valeur décimale		12=8+4				5=4	4+1	
Poids du bit	2 ³	2 ²	2 ¹	20	2 ³	2 ²	2 ¹	20
Nombre binaire	1	1	0	0	0	1	0	1

Exercices de conversion

Convertir

1)	Convertir	ces nombres	en binaire :

- a) (125)10:
- b) (92)10:
- c) (27)10:
- d) (255)10:

2) Convertir ces nombres en décimal :

- a) (0000 0110)2:
- b) (0110 0101)2:
- c) (1000 1110)2:
- d) (1010 1111)2:

Traitement de l'information Les systèmes de numération

Le 08/10/11 Auteurs : FC, JPK, LL,JCP

3) <u>Convertir ces nombres en décimal :</u>

a)	(A1)16:
b)	(F2)16:
c)	(E2A)16:
d)	(3B)16:
e)	(14D)16:
4)	Convertir ces nombres en binaire :
a)	(1F)16:
b)	(2C)16:
c)	(9E)16:
d)	(3B)16:
e)	(B6)16:
5)	Convertir ces nombres dans les bases demandées :
a)	(18)10 en base 8:
b)	(24)10 en base 7:
c)	(44)10 en base 6: